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Binary Choice With Endogenous or Mismeasured Regressors - Outline

1. The model and normalizations

2. Comparison of Parametric and Semiparametric Estimators
a. Linear Probability Model
b. Maximum Likelihood
c. Control Functions
d. Special Regressor (at length)

3. Fitted choice probabilities and marginal effects

4. Simultaneity, Coherence, and Completeness
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This lecture is based primarily on:

Lewbel, A., Y. Dong, and T. Yang, (2012) “Comparing Features of
Convenient Estimators for Binary Choice Models With Endogenous
Regressors,” forthcoming, Canadian Journal of Economics.

Dong, Y. and A. Lewbel, (2012) “A Simple Estimator for Binary Choice
Models with Endogenous Regressors,” forthcoming, Econometrics Reviews.

Lewbel, A. (2007), "Coherence and Completeness of Structural Models
Containing a Dummy Endogenous Variable," International Economic
Review, 48, 1379-1392.

Lewbel, A. (2000), “Semiparametric Qualitative Response Model
Estimation With Unknown Heteroscedasticity or Instrumental Variables,”
Journal of Econometrics, 97, 145-177.
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The model

D = Binary (dummy) dependent variable, e.g. decision to migrate or to
buy a car.
X = Vector of regressors, e.g., income, age, demographics, treatment
indicator.
β, β̃ = Vectors of coeffi cients.
ε = error term (unobserved heterogeneity).

Standard threshold crossing binary choice model (e.g., logit or probit):
D = I (X ′β+ ε ≥ 0)

Exception: linear probability model: D = X ′ β̃+ ε

When convenient to separate out one regressor, will call that regressor V
and write the model as D = I (V α+ X ′β+ ε ≥ 0)
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Binary Choice Topics NOT Covered Here

Nonlinear or nonparametric indices in place of X ′β.

Nonadditive or nonseparable error ε.

Dynamic choice, binary choice panels, multinomial choice, ordered
choice.

Bounds or set identified models.

Binary choice of strategies within games.

Reduced form treatment effect / program evaluation (though note
these are often equivalent to linear probability models).

However, most of the estimators here can be extended to include most of
the above topics.
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Normalizations

With D = I (X ′β+ ε ≥ 0), β and ε moments are only identified up to
location and scale.

Scale: Fit stays the same if replace β and ε with βλ and ελ for any λ > 0.

Location: Let β0 be the constant term in X ′β. Fit stays the same if
replace β0 and ε with β0 + κ and ε− κ for any κ > 0.

Probit chooses location and scale by setting E (ε) = 0, var (ε) = 1.

Semiparametric often chooses location and scale by setting β0 = 0 and
coeffi cient α of some regressor (call it V ) equal to one.

Other estimators have different normalizations, e.g., average derivative
estimation, maximum score.
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Normalizations - continued

Choice of location and scale normalizations has no effect on estimated
choice probabilities or marginal effects.

Sometimes choice of normalization has an economic interpretation.
Suppose the model is D = I (V α+ X ′β+ ε), where D is a purchase
decision and V is − (price). If normalize scale to make α = 1, and
location to make E (ε) = 0, then x ′β is average willingness to pay
(reservation price) for consumer of type X = x .

When comparing estimators, write both in terms of marginal effects, or
convert to same normalization. E.g. If a semiparametric normalizes α = 1,
then given a probit β̂ can calculate β̂/â to compare.
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Estimators for Models with Endogenous regressors

Partition X into two vectors:
X 0 = Exogenous regressors (uncorrelated with ε), e.g., age.
X e = Endogenous regressors (correlated with ε), e.g., income.
Similar for coeffi cients βe , βo or β̃e , β̃o
Z = Vector of instruments (includes X 0), e.g. gov’t defined benefits.

For Linear probability model D = X ′ β̃+ ε = X e ′ β̃e + X
o ′ β̃o + ε

For Other estimators: D = I (X ′β+ ε ≥ 0) = I (X e ′βe + X o ′βo + ε ≥ 0)

Assume for now triangular system: X e = g (Z , e) or latent simultaneous
X e = G ∗ (Z , e∗,X ′β+ ε) which has reduced form X e = g (Z , e).

But not X e = G (D,Z , e).
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The Linear Probability Model - LPM

Assume D = X ′ β̃+ ε, E (Z ε) = 0, rank(ZX ′) = dim
(

β̃
)

Estimator: linear 2SLS with instruments Z .

LPM has all the advantages of linear 2SLS:

X e = g (Z , e) does not need to be specified.

Computationally easy, no numerical searches required (nice for
bootstrapping).

Omitting some instruments ineffi cient, not inconsistent.

X e can include discrete, continuous, limited, etc.,

Estimator is the same regardless of whether X e has discrete or
continuous elements.

Allows general heteroskedasticity, e.g., random coeffi cients.
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The Linear Probability Model - LPM - continued

D = X ′ β̃+ ε, E (Z ε) = 0, rank(ZX ′) = dim
(

β̃
)
.

Disadvantages of linear probability models:

Fitted distribution function F̂D is linear, not S shaped; an adequate
approx only for a limited range of X .

Often implausibly extreme F̂D , easily negative or above one.

Formally, no element of X can have ∞ support, e.g., no normal
regressors.

ε not independent of any regressor, even exogenous ones, because for
any value of X , must have ε equal 1− X ′ β̃ or −X ′ β̃. What economic
model justifies both this dependence and E

(
X 0ε

)
= 0?

Does not nest probit, logit, etc., can’t compare effi ciency.
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The Linear Probability Model - LPM - continued

The LPM can get signs wrong.
Suppose D = I (1+ T + R + ε ≥ 0), true coeffi cients are all 1.
T = binary treatment indicator, R = a regressor, ε is small.
True treatment effect is I (2+ R + ε ≥ 0)− I (1+ R + ε ≥ 0) ≥ 0
equals 0 or 1 for everybody, is never negative in this model.

Suppose data are: R1 = −1.8, R2 = −0.9, R3 = −0.92, R4 = −2.1,
R5 = −1.92, R6 = 10, T1 = 0, T2 = 0, T3 = 0, T4 = 1, T5 = 1, T6 = 1.
Given tiny errors, get outcomes D1 = 0, D2 = 1, D3 = 1, D4 = 0, D5 = 1,
D6 = 1.

Half the sample are treated, average treatment effect ATE is 1/6.
LPM D = β0 + T β1 + Rβ2 + ε by OLS has β̂1 = −0.16, MRS
β̂1/β̂2 = −3.2.

LPM estimates a negative treatment effect, even though every single
person actually has a zero or positive effect!
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Maximum Likelihood Estimation - ML

Assume D = I (X ′β+ ε ≥ 0), and X e = G (Z , θ, e)
vector function G fully specified, parameterized, e.g., G could be linear if
X e is continuous, or a probit if X e is binary.
Joint distribution of (ε, e | Z ) fully specified, parameterized.
Implementation: see standard textbooks like Greene (2008) or Wooldridge
(2010).

Advantages of ML:

Nests standard logit, probit, etc., as special cases

X e can include discrete, continuous, limited, etc.,

Allows general heteroskedasticity, e.g., random coeffi cients.

Asymptotically effi cient (requires and uses the most info).
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ML - continued

D = I (X ′β+ ε ≥ 0), and X e = G (Z , θ, e)

Disadvantages of ML:

Need to parameterize everything: G and Fε,e |Z
Numerical problems are common (ridges, failure to converge, multiple
solutions).

Many nuisance parameters, sometimes poorly identified, e.g.
correlations of latent ε with e. Particular problem when some X e are
also discrete.

Need to know all the required instruments Z . Omitting any causes
inconsistency from G misspecification. (Not sure something’s
exogenous? Too bad).
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Control Function Estimation - CF

Assume D = I (X ′β+ ε ≥ 0),
X e = G (Z ) + e, or X e = G (Z , e) identified and invertible in e.
ε = λ′e + U or ε = H (U, e) with conditions, and U ⊥ Z , e.

e.g. Stata ivprobit has G (Z , e) linear, and (e, ε) jointly normal and
independent of Z .

Simplest CF Estimator:

1. Estimate vector of functions G in the X e models, get estimated errors ê.

2. Estimate the D model including ê as additional regressors in addition to
X . The errors U in this model are now clean.
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Control Function Estimation continued

D = I (X ′β+ ε ≥ 0), X e = G (Z , e), ε = H (U, e), U ⊥ X , e

Key requirements for CF estimators:

Must be able to solve for errors e in X e equations.
Must have endogeneity caused only by ε related to e, so after
conditioning on e have ε no longer depend on X e .

Advantages of CF Estimation:

Nests standard logit, probit, etc., as special cases.
Requires less info than ML.
Some versions are computationally easy not needing numerical
searches (nice for bootstrapping)
Less effi cient than ML due to less info used, but CF sometimes
semiparametrically effi cient relative to the info used.
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Disadvantages of Control Functions (not well known)

D = I (X ′β+ ε ≥ 0), X e = G (Z , e), ε = H (U, e), U ⊥ X , e

Only permits limited forms of heteroskedasticity.
Need to correctly specify the vector of high dimensional functions
G (Z , e), including knowing Z . Omitting instruments or wrong G can
cause inconsistency, because e needs to satisfy joint conditions with ε.
CF is usually inconsistent when any endogenous regressor in X e is
discrete, censored, limited, or otherwise not continuously distributed!

Can’t solve for a latent e in G (Z , e). E.g. if X e = max (0,Z ′γ+ e) then
can’t get ê for the censored at zero observations

An observable e is e = X e − E (X e | Z ), but for discontinuous X e that e
violates assumptions (except in freaky special cases). Example:
ε = [X e − E (X e | Z )] λ+ U satisfies CF, but if X e is discrete this forces
ε to have a strange distribution that depends on all regressors. What
behavioral model yields this ε?
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Example of Control Function issues - IVPROBIT in STATA

ivprobit: D = I (X ′β+ ε ≥ 0), X e = Z ′γ+ e, (e, ε) ⊥ Z , normal.

Despite the name, ivprobit is not an iv estimator. It’s a control function.

ivprobit uses D = I (X eβe + eλ+ U ≥ 0) where U is a homoskedastic
normal, Estimate as a probit after plugging in first stage e.

1. Let Z ′γ = Z1γ1 + Z2γ2. What if you leave out instrument Z2? Get

X e = Z1γ̃1 + ẽ, and D = I
(
X eβe + ẽλ̃+ Ũ ≥ 0

)
where Ũ = U + δZ2.

So if Z2 is not normal then Ũ is not normal and generally heteroskedastic.
Dropping an instrument causes the model to no longer be probit.

2. What if X e is discrete or censored or limited? Then again in general e
is not normal and not independent of Z , violating ivprobit assumptions.

Stata ivprobit has two estimation options: two step or MLE. Both are
generally inconsistent when X e is not continuous or when an instrument is
left out.
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Control Functions and Generalized Residuals

Can control functions ever be used when the endogenous regressor is
discrete? Yes, but...

Given a probit estimate of the endogenous regressor, it is sometimes
possible to construct a "generalized residual," eg (see, e.g., Imbens and
Wooldridge lecture notes). This eg is constructed to be proportional to
E (ε | Z , e) . An estimate êg of eg can be included as a regressor in the
model to fix the endogeneity problem, just as ê would have been used if
the endogenous regressor were continuous.

Problem: In linear models this is unnecessary, since IV will work there with
far fewer restrictions. But in nonlinear models, like our discrete choice
model, constructing êg requires almost the same assumptions as ML, so in
that case better to do ML which is effi cient.

Lewbel (Boston College) Binary Endogenous 18 / 45



Special Regressor Estimation - Literature

Binary, ordered, and multinomial choice, censored regression, selection,
and treatment models (Lewbel 1998, 2000, 2007a), truncated regression
models (Khan and Lewbel 2007), binary panel models with fixed effects
(Honore and Lewbel 2002), dynamic choice models (Heckman and
Navarro 2007, Abbring and Heckman 2007), contingent valuation models
(Lewbel, Linton, and McFadden 2008), market equilibrium models of
multinomial choice (Berry and Haile 2009a, 2009b), models with (partly)
nonseparable errors (Lewbel 2007b, Matzkin 2007, Briesch, Chintagunta,
and Matzkin 2009).
Other empirical applications: Anton, Fernandez Sainz, and Rodriguez-Poo
(2002), Cogneau and Maurin (2002), Goux and Maurin (2005), Stewart
(2005), Lewbel and Schennach (2007), and Tiwari, Mohnen, Palm, and
van der Loeff (2007).
Precursors: Matzkin (1992, 1994) and Lewbel (1997).
Recent theory: Magnac and Maurin (2007, 2008), Jacho-Chávez (2009),
Khan and Tamer (2010), and Khan and Nekipelov (2010a, 2010b).
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Special Regressor (SR) Estimation - overview

To explain SR identification, consider the model where the only regressors
are a constant term and single continuous exogenous regressor V :

D = I (α+ V + ε ≥ 0), ε ⊥ V , unknown α, unknown Fε.

Let F−α−ε () be CDF of −α− ε.

E (D | V = v) = Pr (D = 1 | V = v) = Pr (−α− ε ≤ v) = F−α−ε (v).

Estimating E (D | V = v) gives F−α−ε (v). From knowing F−α−ε (v) for
all v ∈ (−∞,∞) can calculate the mean of α+ ε, which is α, and knowing
both α and F−α−ε gives Fε.

If ε is bounded, only need v ∈ [α+min ε, α+min ε]

If tails of ε are symmetric, even smaller range of v works, because the
unestimated upper and lower tails of F−α−ε can cancel each other out in
calculating the mean (Magnac and Maurin 2007).
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Special Regressor (SR) Estimation - overview continued

With D = I (α+ V + ε ≥ 0), could estimate E (D | V = v) by a
nonparametric regression, then obtain α by∫

ΩV

−v ∂E (D | V = v)
∂v

dv = −
∫

ΩV

v
∂F−α−ε (v)

∂v
dv

= −
∫

ΩV

vf−α−ε (v) dv = −E (−α− ε) = α

This shows identification, and provides a way one could estimate α. But
there is an easier estimator.
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Special Regressor (SR) Estimation - overview continued

Define T =
D − I (V ≥ 0)

fv (V )
where fv () is pdf of V . Will show E (T ) = α

E (T ) = E
[
E
(
D − I (V ≥ 0)

fv (V )
|V = v

)]
by iterated expectations

= E
(
(D | V = v)− I (v ≥ 0)

fv (v)

)
=
∫

ΩV

E (D | V = v)− I (v ≥ 0)
fv (v)

fv (v) dv

=
∫

ΩV

[E (D | V = v)− I (v ≥ 0)] dv . Integrate by parts:

= v [E (D | V = v)− I (v ≥ 0)] |ΩV −
∫

ΩV

v
∂E (D | V = v)

∂v
dv

= v [F−α−ε (v)− I (v ≥ 0)] |ΩV + α = α

So easy estimator is α̂ = T , sample average of T .
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Special Regressor (SR) Estimation - Tail Symmetry

Let A = E (T ) = −
∫

ΩV
vf−α−ε (v) dv . We showed A = α, assuming big

support: ΩV ⊆ supp (−α− ε).

Suppose ΩV = [`, u] and supp (−α− ε) = [`− L, u + U ]. If L or U is
positive then the support of V isn’t big enough. In this case

α =
∫ u+U

`−L
vf−α−ε (v) dv = δ+ A

where

δ =
∫ L

`−L
vf−α−ε (v) dv +

∫ u+U

u
vf−α−ε (v) dv

Tail symmetry is when δ = 0, so α = E (T ) and the special regressor
works even though the support of V is not large enough (Magnac and
Maurin 2007).

If support of V is reasonably large, and tails of ε are thin or close to
symmetric, then δ will be small and so bias will tend to be small even if
tail symmetry or support is violated.
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Special Regressor Estimation - SR

Assume D = I (V + X ′β+ ε ≥ 0), E (Z ε) = 0, rank(ZX ′) = dim (β),
ε ⊥ V | Z ,X e , supp(−X ′β− ε) ⊆ supp(V ) (or tail symmetry), V | Z ,X e
continuously distributed.

One regressor V is "strongly" exogenous (conditionally independent of ε)
and continuously distributed with a large support or tail symmetry.

All instruments Z , and all other regressors X (including all the endogenous
regressors X e ) satisfy only the same conditions as linear 2SLS: E (Z ε) = 0
and rank(ZX ′) = dim (β).

SR Estimator:
1. Construct T = [D − I (V ≥ 0)] /fv (V | Z ,X e ).
Can show that T = X ′β+ ε∗ where E (Z ε∗) = 0.

2. Do linear 2SLS regression of T on X using instruments Z to get β.
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Special Regressor Estimation - SR

D = I (V + X ′β+ ε ≥ 0), E (Z ε) = 0, rank(ZX ′) = dim (β),
ε ⊥ V | Z ,X e , supp(−X ′β− ε) ⊂ supp(V ), V | Z ,X e continuous.

Disadvantages of SR estimation:

To construct T = [D − I (V ≥ 0)] /fv (V | Z ,X e ) need an estimator
of fv , the conditional density function of V . Will later give
parametric, semiparametric, and nonparametric examples.
Need V to have thick tails relative to ε, else T estimator may behave
badly (large outliers and/or slow convergence rate). Formally, need
var (V ) infinite or supp(−X ′β− ε) finite or tail symmetry.
Informally, biases tend to be small when var (V ) comparable to
var(−X ′β− ε), or when ε is thin tailed and/or symmetric ε.
Need V ’strongly’exogenous (will discuss later).
V must appear linearly in the model (e.g., X o can’t include V 2,
because V | V 2 is not continuous.
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Special Regressor Estimation - SR

(The Sales Pitch): SR has almost all of the advantages and none of the
disadvantages of all the other estimators.

Advantages of SR Estimation:

X e = g (Z , e) does not need to be specified, only need E (Z ε).
Omitting some instruments is ineffi cient, not inconsistent.
X e can include discrete, continuous, limited, etc.,
Estimator is the same regardless of whether X e has discrete or
continuous elements.
Allows general heteroskedasticity, e.g., random coeffi cients.
Computationally easy, no numerical searches required (nice for
bootstrapping)
Nests standard logit, probit etc.,
Requires less info than ML and CF (except info on V ).
Less effi cient than ML and CF due to less info used, but some
versions are semiparametrically effi cient relative to the info used.
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Implementing the SR estimator

D = I (V + X ′β+ ε ≥ 0), E (Z ε) = 0, rank(ZX ′) = dim (β),
ε ⊥ V | Z ,X e , supp(−X ′β− ε) ⊂ supp(V ), V | Z ,X e continuous.

Original SR Estimator (Lewbel 2000):
1. Demean or otherwise center V at zero. By exogeneity assume
conditional density fv (V | Z ,X e ) = fv (V | Z ) and let f̂v (V | Z ) be a
nonparametric kernel estimator of fv (V | Z ). Or just use kernel estimator
of f̂v (V | Z ,X e ).

2. For each observation i , Construct T̂i = I [Di − I (Vi ≥ 0)] /f̂v (Vi | Zi ).

3. Do a linear two stage least squares regression of T̂ on X using
instruments Z to get the estimated coeffi cients β̂.

Here f̂v (V | Z ) is high dimensional. So will now consider some simpler
parametric or semiparametric specifications for fv .
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Numerically Trivial SR estimator

Let S = Z ,X e , or just Z if V doesn’t depend on X e . Assume

D = I (X ′β+ V + ε ≥ 0), E (Z ε) = 0, E (V ) = 0,

V = S ′b+ U, E (U) = 0, U ⊥ S , ε, U ∼ f (U)

supp(−S ′b− X ′β− ε) ⊆ supp(U) or tail symmetry
f (U) is a mean or median zero pdf. T = [D − I (V ≥ 0)] /f (U). Then
T = X ′β+ ε̃ where E (Z ε̃) = 0.

V is modeled as linear in covariates S and an independent error U.

1. Demean or demedian Vi . Estimate b̂ by linear OLS Vi = S ′i b+ Ui .
Construct residuals Ûi = Vi − S ′i b̂.

2. Estimate density f of Ûi .
3. Construct data T̂i = Di − I (Vi ≥ 0)/f̂

(
Ûi
)
.

4. Do a linear 2SLS of T̂ on X using instruments Z to get the estimated
coeffi cients β̂.
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This simple SR estimator needs a one dimension density f̂
(
Ûi
)
. Possible

estimators include:

A parametric estimator, or standard one dimensional kernel density
estimator (e.g., kdensity command in Stata), or:

Sorted data estimator (Lewbel and Schennach 2007):
1. Sort Ûi , from lowest to highest.
2. For each Ûi , let Û+i be the value of Û that, in the sorted data, comes
immediately after Ûi (after removing any ties) and similarly let Û−i be the
value that comes immediately before Ûi .
3. Let

f̂
(
Ûi
)
=

2/n
Û+i − Û−i

for i = 1, ..., n

No searching, kernel, or bandwidth.
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Special Regressor Estimation - Asymptotics

Simplest: Since estimators are numerically trivial and no numerical
searches are required, bootstrapping is practical and easy (for iid data,
draw all the variables with replacement and repeat all the estimation steps
with each drawn data set).

Another option: If the density f is parameterized, can do all the steps
either sequentially or jointly as a GMM estimator.

Example: Numerically trivial estimator with normal f is estimating desired
parameters β with nuisance parameters b, σ2 using moments

E
[
S
(
V − S ′b

)]
= 0

E
[(
V − S ′b

)2 − σ2
]
= 0

E
[
Z
(
D − I (V ≥ 0)
f (V − S ′b | σ2)

− X ′β
)]

= 0

note: can replace I (V ≥ 0) with F (V ) for any distribution function F .
This makes objective function smoother.
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Interpreting Exogeneity of V Assumption:

In the simple estimator, exogeneity is U ⊥ S , ε where V = g (S) + U and
S is all other regressors X and instruments Z . Simplest estimator has
g (S) = S ′b, but can be any g .

U ⊥ ε is ordinary exogeneity, being independent of the model error term.

Having V = g (S) +U divides V into a fitted part g (S) and a residual U.
This decomposition of V into g (S) and U is just a regression, not a
structural model.

U independent of S is stronger. This requires that, if any endogenous
regressors in the model depend on V , they do so only by depending on the
fitted part g (S) and not on the residual U.
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Special Regressor Estimation - Tails and Asymptotics

SR involves dividing by f , the density of V , which can cause the
constructed variable T to have thick tails. Implications:

Standard root n limiting distribution theory requires V to have infinite
variance OR X ′β+ ε have bounded support OR ε satisfies tail
symmetry.

Without root n, convergence rates can be slow, requiring the limiting
distribution theory given by Khan and Tamer (2010), Khan and
Nekipelov (2010) or Hill and Renault (2010).

In practice, should check for outliers in the final 2SLS step, maybe
trim the data (discarding outliers) to robustify.

In practice, compare variance, spread of V versus X ′ β̂. Small sample
biases tend to be small when spread of V is relatively large.
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Special Regressor Estimation - An Example
Empirical estimates are in Dong and Lewbel (2011).

D = one if move (migrate), zero if not. V = age.
X e = income before moving, homeownership dummy before moving.
X o = demographic characteristics.
Z = government benefits, state median residential property tax rates.

D = I (V + X e ′βe + X
o ′βo + ε ≥ 0).

ML impractical, need much more info to fully model endogenous income
and homeownership.

CF assumptions violated by homeownership binary and not having all
instruments Z needed to get independent errors in models of X e .

SR is ok. Age (or residual U in regression of Age on X e and Z ) is
exogenous with large support. Empirically and by human capital theory,
the returns to moving (present value of associated wage gains) decline
linearly with age V .
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A Few Other Estimators

Vytlacil and Yildiz (2007): If D = I (X e ′βe + X
o ′βo + ε ≥ 0) and X e is a

single binary dummy, treat X o ′βo like the special regressor V . Then
D = I (X eβe + V + ε ≥ 0). With instruments Z to hold E (X e | Z ) fixed,
shows only need supp (V ) ⊇ supp (−X eβe ) instead of
supp (V ) ⊇ supp (−X eβe − ε). If βe can be anything, then still need
infinite support for V .

Maximum Score (Manski 1975, 1985, Horowitz 1992) mainly deals with
heteroskedasticity in ε, not endogeneity. Hong and Tamer (2003) extend
to handle endogeneity assuming median(ε | Z ), but Shaikh and Vytlacil
(2008) show point identification requires strong restrictions on βe and on
X e | Z .

Quantile extensions of control functions can cover endogeneity and
heteroskedasticity, e.g, Chesher (2009) and Hoderlein (2009).
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Yet More Other Estimators

Nonseparable errors: Altonji and Matzkin (2005), Imbens and Newey
(2009), many, others. ML, CF, and SR all have nonseparable error
extensions.

Bounds and set identification: Manski (2007), Magnac and Maurin
(2008), Chesher (2010), many, many other.

Reduced form treatment effects and program evaluation with binary
outcomes and endogenous treatment. See Angrist and Pischke (2008) and
many, many, many others. Note that the standard ATE model is equivalent
to the linear probability model variant D = g

(
X 0
)
+ h

(
X 0
)
X e + ε where

X e is an endogenous binary treatment indicator.
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Fitted Choice Probabilities

With exogenous regressors X , the propensity score or choice probability is
defined as p (X ) = Pr (D = 1 | X ) = E (D | X ).

If D = I (X ′β+ ε ≥ 0) with ε ⊥ X , then

p (X ) = E (D | X ) = E
(
D | X ′β

)
= F−ε

(
X ′β

)
where F−ε is the marginal distribution function of −ε.

Given β̂, could estimate p̂ (X ) by one dimensional nonparametric
regression of D on X ′ β̂
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Fitted Choice Probabilities - continued

For ε independent of X , had E (D | X ) = E (D | X ′β) = F−ε (X ′β).

What if D = I (X ′β+ ε ≥ 0) but ε is not independent of X , due to
heteroskedasticity or endogenous regressors? Then all three are different:

E (D | X ) is propensity score. This is a high dimensional nonparametric
regression of D on X . It ignores β.

F−ε (X ′β) is ASF (average structural function, Blundell and Powell 2000).
ASF is the marginal distribution F−ε evaluated at X ′β. The F−ε function
can be diffi cult to identify and estimate because ε is latent.

E (D | X ′β) is AIF (average index function, Dong and Lewbel 2011). AIF
equals E (D | X ′β). This is an easy to estimate one dimensional
nonparametric regression of D on X ′β.
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Fitted Choice Probabilities - continued

Propensity score: E (D | X ) = F−ε|X (X
′β | X ).

AIF: E (D | X ′β) = F−ε|X ′β (X
′β | X ′β).

ASF: F−ε (X ′β)

AIF (conditioning on X ′β) is a middle ground between propensity
score (conditioning on all of X ) and ASF (conditioning on nothing):
F−ε|X vs F−ε|X ′β vs F−ε.

Unlike propensity score, AIF uses β and doesn’t require high
dimensional estimation.

Unlike ASF, AIF is always identified and easy to estimate.

ASF, AIF and propensity score are all identical under exogeneity.
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Fitted Choice Probabilities - Marginal Effects

With exogenous X : marginal effects are m (X ) = p′ (X ) =
∂E (D | X )

∂X
Let f−ε be marginal pdf of −ε. If D = I (X ′β+ ε ≥ 0) with ε ⊥ X , then

m (X ) =
∂E (D | X )

∂X
=

∂E (D | X ′β)
∂X ′β

β = f−ε

(
X ′β

)
β

With endogenous X :

Propensity score marginal effects are m (X ) = p′ (X ) =
∂E (D | X )

∂X
.

ASF marginal effects are m (X ) =
∂ASF (X ′β)

∂X ′β
β = f−ε

(
X ′β

)
β.

AIF marginal effects are m (X ) =
∂AIF (X ′β)

∂X ′β
β =

∂E (D | X ′β)
∂X ′β

β.

Given β̂, and ASF and AIF marginal effects just require one dimensional
index derivative.
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Simultaneity, Coherence, and Completeness

Consider a trivial simultaneous system:

D = I (Y + e1 ≥ 0), Y = αD + e2

Then D = I (αD + e1 + e2 ≥ 0)
If D = 0 then Y = e2 and 0 = I (e1+ e2 ≥ 0) so e1+ e2 < 0
If D = 1 then Y = α+ e2 and 1 = I (α+ e1 + e2 ≥ 0), so α+ e1 + e2 ≥ 0
Incomplete: both D = 0 and D = 1 are solutions if −α ≤ e1 + e2 < 0.
Incoherent: Neither D = 0 nor D = 1 hold if 0 ≤ e1 + e2 < −α.

This model is incoherent or incomplete unless e1 + e2 is constrained not to
lie between zero and −a.
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Simultaneity, Coherence, and Completeness - continued

Incoherence: For parameter values, the model is not internally consistent.

A model must be coherent before one should even consider identification
and estimation.

Incompleteness: For some values of parameters, the same values of all
exogenous variables (both observed and unobserved) can yield multiple
values of the endogenous variables.

Multiple equilibria in games is an example of incompleteness. Usually
causes identification problems and requires special estimators.

Heckman (1978), Gourieroux, Laffont, and Monfort (1980), Blundell and
Smith (1994), Dagenais (1997), Bresnahan and Reiss (1991), Tamer
(2003), Aradillas-Lopez (2005), Lewbel (2007).

Theorems that follow are from Lewbel (2007 IER McFadden Festschrift).
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Simultaneity, Coherence, and Completeness - continued

Let W be a vector of observed or unobserved exogenous variables. With
D ∈ {0, 1} consider the system

D = H1(D,Y ,W ), Y = H2(D,Y ,W )

Theorem (Lewbel 2007): This system of equations is coherent and
complete iff for some g :

H1[1, g(1,W ),W ] = H1[0, g(0,W ),W ], Y = g(D,W )

To prove, solve for reduced form equation Y = g(D,W ), substitute it into

H1, and show incoherence or incompleteness whenever
H1[D, g(D,W ),W ] is not the same for both values of D.
Note here Y is continuous or discrete or limited. Requirement that
H1[D, g(D,W ),W ] not depend on D is very restrictive.
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Simultaneity, Coherence, and Completeness - continued

Suppose the D model is a general threshold crossing model:

D = I [h(D,Y ,W ) + e1 ≥ 0] , Y = H2(D,Y ,W )

here W can include e1. Y is continuous or discrete or limited.

Theorem: This system is coherent and complete iff for some g ,
Y = g(D,W ) and either s0(W ) = s1(W ), or e1 /∈ interval
[−s0(W ),−s1(W )] where sd (W ) = h[d , g(d ,W ),W ].

Proof: By previous Theorem coherency requires
I [s0(w) + e1 ≥ 0] = I [s1(w) + e1 ≥ 0], which holds if s0(w) = s1(w) or
by limiting e1.

Shows must either restrict the error support or strongly restrict h.
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Simultaneity, Coherence, and Completeness - continued

Theorem 2 models can be rewritten in either of the following ways:
Generalize Blundell and Smith (1994). For some H (To preserve threshold
crossing, make D depend on D):

D = I [H [Y + [g(0,W )− g(1,W )]D,W ] + e1 ≥ 0], Y = g(D,W )

or generalize Heckman (1978) (triangular, but direction of dependence can
depend on W :

D = I [φ[(1− t(W ))Y ,W ] + e1 ≥ 0], Y = g [t(W )D,W ]

where t(W ) is zero or one, which determines direction of causality.

An alternative is instead assume simultaneity of an unobserved continuous
latent variable that determines D, e.g. D∗ = h(Y ,W ) and
Y = g(D∗,W ) are fully simultaneous with D = I (D∗ ≥ 0).
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Binary Choice With Endogenous Regressors - Conclusions

Linear probability models, Maximum Likelihood, and Control
functions (including ivprobit) have more drawbacks and limitations
than are usually recognized.
Special Regressor estimators are a viable alternative (or at least they
have completely different drawbacks and may be more generally
applicable than has been recognized).
In practice, best might be to try all estimators and check robustness
of results. Can use marginal effects to normalize them the same when
comparing.
Average Index Functions can be used to construct estimated
probabilities and comparable marginal effects across estimators, often
simpler to calculate than Average Structural Functions.
Fully simultaneous systems involving a binary regressor are restrictive:
must check for coherence and completeness before considering
identification and estimation.
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